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Abstract

Remdesivir is a leading therapy in patients with moderate to severe coronavirus 2 (SARS-

CoV-2) infection; the majority of whom are older individuals. Remdesivir is a nucleoside ana-

log that incorporates into nascent viral RNA, inhibiting RNA-directed RNA polymerases,

including that of SARS-CoV-2. Less is known about remdesivir’s effects on mitochondria,

particularly in older adults where mitochondria are known to be dysfunctional. Furthermore,

its effect on age-induced mitochondrial mutations and copy number has not been previously

studied. We hypothesized that remdesivir adversely affects mtDNA copy number and dele-

tion mutation frequency in aged rodents. To test this hypothesis, 30-month-old male

F333BNF1 rats were treated with remdesivir for three months. To determine if remdesivir

adversely affects mtDNA, we measured copy number and mtDNA deletion frequency in rat

hearts, kidneys, and skeletal muscles using digital PCR. We found no effects from three

months of remdesivir treatment on mtDNA copy number or deletion mutation frequency in

33-month-old rats. These data support the notion that remdesivir does not compromise

mtDNA quality or quantity at old age in mammals. Future work should focus on examining

additional tissues such as brain and liver, and extend testing to human clinical samples.

Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) has been a pandemic for over two years [1, 2]. Older persons are at

increased risk for hospitalization or death from COVID-19 [3, 4]. According to a modeling

study, the rate of COVID-19 patients hospitalized increased with age: 1% for those 20 to 29

years old, 4% for those 50 to 59 years old, and 18% for those older than 80 years of age [5].

Moreover, the risk for death among individuals 80 years and older is 20-fold higher than
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among individuals 50 to 59 years old [6]. According to the Center for Disease Control, more

than 75% of COVID-19 deaths have been in older patients, including more than a quarter in

people aged 85 and older (https://covid.cdc.gov/covid-data-tracker/#datatracker-home).

Remdesivir (Veklury1) is indicated for the inpatient and outpatient treatment of COVID-

19 and is standard of care for hospitalized patients with moderate to severe COVID-19.

Approximately four million individuals have been hospitalized with COVID as of January

2022. Of these, up to ~50% have received remdesivir [7]. Therefore, approximately two million

US patients have received remdesivir thus far–a number that will increase given remdesivir’s

recently expanded use as an outpatient therapy. Despite its approval by the Food and Drug

Administration (FDA), however, limited clinical data exists pertaining to its safety [8]. Remde-

sivir has not been evaluated for geriatric use [9]. There is a knowledge gap regarding the safety

of drugs such as remdesivir in geriatric populations as individuals >64 years of age are rou-

tinely underrepresented in clinical trials [10]. This gap requires research as older individuals

are often the primary target population for drugs such as remdesivir.

Remdesivir is a prodrug that is converted in vivo into an adenosine nucleoside analogue

and subsequently phosphorylated to its triphosphate activated form. The targeted activity of

remdesivir is the inhibition of viral RNA-dependent RNA polymerase necessary for the repli-

cation of the viral genome [8, 11]. As a nucleoside analogue, remdesivir has the potential for

numerous off-target mitochondrial effects that may alter mitochondrial DNA [12, 13]. These

off-target effects could impact mitochondrial DNA homeostasis through disruption of mito-

chondrial polymerases (e.g., DNA polymerase gamma, PrimPol, and mitochondrial RNA

polymerase), nucleotide metabolism, mitochondrial respiration, and nucleotide/nucleoside

pools. 2’-OH and 3’-OH ribonucleoside analogs such as remdesivir that resemble the building

blocks of RNA are expected to have minimal interaction with DNA polymerases. However,

mitochondrial DNA polymerase gamma possesses the ability to incorporate ribonucleotides

into DNA [14, 15], but with a 1,100-fold to 7,000-fold preference for deoxyribonucleotides

[13]. Remdesivir impedes mitochondrial DNA polymerase gamma activity, but stimulates exo-

nucleolytic activity, in vitro [16]. PrimPol, another DNA primase/polymerase found in mito-

chondria is capable of utilizing and extending from ribonucleotides [17, 18]. While remdesivir

has minimal effects on the mitochondrial RNA polymerase activity in vitro [11, 19], remdesivir

had a rate of incorporation of 5.8% relative to ATP when assessing mtRNA polymerase activity

[19].

As an ATP-analogue, the active metabolite of remdesivir may participate in numerous

unexplored cellular and mitochondrial processes. For example, the active metabolite could

affect ATP buffering by creatine kinase and myokinase interfering in muscle metabolism simi-

larly to beta-guanidinoproprionic acid, an analog of phosphocreatine [20, 21]. Remdesivir

could also inhibit the adenine nucleotide translocator (ANT), which exchanges ATP and ADP

across the mitochondrial inner membrane. Genetic defects in ANT lead to mtDNA deletion

mutations and mitochondrial myopathy [22]. The possible impact of remdesivir on any of

these mitochondrial processes has implications for mtDNA replication, copy number, and

mutation frequency.

The reported mitochondrial effects of remdesivir vary widely. Direct in vitro effects of

remdesivir on isolated pig brain mitochondria showed little or no effect on mitochondrial res-

piration [23]. However, remdesivir induced persistent mitochondrial changes including mito-

chondrial fragmentation, reduced redox potential, and suppressed mitochondrial respiration

in an in vitro human cardiac stem cell model [24]. Remdesivir decreased mitochondrial respi-

ratory gene expression, ATP production, and mitochondrial oxidation in human intestinal

and liver cell lines [25 Preprint]. With respect to remdesivir’s effect on the mitochondrial

genome, remdesivir did not alter mitochondrial DNA copy number in human liver cells or
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skeletal muscle fibroblast cells [26], but increased mtDNA copy number in human neonatal

dermal fibroblasts [16] and HepG2 cells [19]. There have been fewer in vivo studies, but

remdesivir treatment in rhesus monkeys resulted in a significant loss of mtDNA in an unspeci-

fied tissue [27]. These studies suggest cell and tissue specific effect of remdesivir that may

impact the quality or quantity of mitochondrial DNA. The in vivo effects of remdesivir on

mitochondrial DNA copy number and mutations in aged animals is unknown. This is espe-

cially relevant as remdesivir is administered predominantly to older COVID-19 patients.

The expanded use of remdesivir has led to the identification of important side effects

including cardiac and renal effects. In the cardiovascular system, remdesivir increased the risk

of bradycardia (Reporting Odds Ratio 1.63) and hypotension [28]. In the renal system, remde-

sivir treatment can cause acute renal failure, with 65-74-year-old old adults being at the highest

risk [29, 30]. The role for mitochondria in these side effects is unclear but is likely related age-

induced changes in these tissues and the reliance of heart and kidney on oxidative metabolism.

Musculoskeletal side effects have not been reported for remdesivir treatment of COVID-19

patients.

MtDNA copy number and deletion frequency predict age and some measures of physical

function in older adults [31, 32] and may be metrics of biological age. We hypothesized that

remdesivir would negatively affect mtDNA quality by altering copy number and increasing

mitochondrial mutation frequency in aged animals. To test this hypothesis, we measured

mtDNA copy number and deletion mutation frequency in heart, kidney, and skeletal muscle

from 33-month-old male rats treated with remdesivir for 3 months. Remdesivir had no effect

on either mtDNA copy number or mutation frequency at old age in this model, indicating that

remdesivir does not negatively impact in vivo mitochondrial DNA quality and quantity in

aged animals (Fig 1).

Materials and methods

Animals, remdesivir treatment, and tissue preparation

This study was carried out in accordance with the recommendations in the NIH Guide for

Care and Use of Laboratory Animals and the guidelines of the Canadian Council on Animal

Care using protocols approved by the Institutional Animal Care and Use Committees at

UCLA and the University of Alberta. Thirty-month-old male Fischer 344 x Brown Norway F1

hybrid rats were obtained from the NIA Aging Rodent Colony. Remdesivir (MW 602.6) was

purchased from VulcanChem (Pasadena, CA) and its authenticity was confirmed by mass

spectrometry (S1 File). Drug delivery was via the subcutaneous implantation of a ninety-day

time-release pellet containing 200 mg of remdesivir (Innovative Research of America, Sarasota,

FL). The dose delivered over the 90 days was approximately 4.25 mg/kg/day. To determine a

dosage for rats, we started with the human dose for remdesivir which is 1.25 mg/kg. Using the

body surface area approach [33] the equivalent rat dose would be 7.8 mg/kg. We were limited

to 4.25 mg/kg/day because of restrictions on the pellet size and available amounts of remdesivir

during the pandemic. Rats were housed on a 12-hour light/dark cycle and fed standard chow.

Control rats were implanted with a placebo pellet prepared from the time-release matrix only.

Animals were euthanized by carbon dioxide asphyxiation followed by exsanguination. Tissues

were dissected from the rats, weighed, and flash frozen in liquid nitrogen, and stored at -80˚C.

DNA isolation

Rat heart, kidney, and quadriceps muscle were ground to a powder using a mortar and pestle

under liquid nitrogen. Total DNA was extracted using proteinase K digestion with SDS and

EDTA, phenol/chloroform extraction, and ethanol precipitation. Total DNA was resuspended
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in 10 mM Tris-EDTA buffer, pH 8. Total DNA quality and quantity was assessed using spec-

trophotometry at A230, A260, and A280 (ThermoScientific Nanodrop 2000 Spectrophotome-

ter), fluorometry (ThermoFisher Qubit 2.0 Fluorometer) and agarose gel electrophoresis.

MtDNA copy number and mtDNA deletion frequency by digital PCR

A 5-prime nuclease cleavage assay and droplet-based digital PCR (dPCR) were used to quanti-

tate copy numbers for nuclear DNA (nDNA), total mtDNA, and mtDNA deletion mutations.

We used a digital PCR approach for these measures. Digital PCR is not dependent on or

affected by the amplification efficiency of the PCR primers or other confounders of quantita-

tive PCR methods [34]. Specific primer/probe sets were used for each target as previously

described [35] and illustrated in Fig 1B. MtDNA deletion frequency is the proportion of

Fig 1. Graphical abstract of the study (A) and design of digital PCR assay (B). Primers and probes are not drawn to scale. Primers and probe

used to quantitate mtDNA deletion mutations flank the mitochondrial major arc to detect age-induced mtDNA deletion mutations. In the wild-

type genome in the left panel, the major arc-flanking primers are too far apart for amplification. In the right panel, an example mtDNA deletion

mutation has brought the major arc-flanking primers within range for amplification of a PCR product.

https://doi.org/10.1371/journal.pone.0271850.g001
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mutant molecules per wild-type mtDNA molecules. MtDNA copy number and mtDNA dele-

tions per 100 nuclei are values normalized to the single copy nuclear gene in the rat, Unc13

[36]. DPCR quantitation of all samples and all targets was performed on coded samples. Blind-

ing was removed following data collection.

Statistical analysis

All data are presented as means ± SEM. Data were tested for a normal distribution. Student’s

t-test was used to compare differences between treatment and control groups. Chi-squared test

was used to determine differences in survival frequency. One-way analysis of variance was

used to test statistical differences between tissues. Prism (Version 7.05, GraphPad Software)

was used for all statistical analyses.

Results

Husbandry and morphometric measures following remdesivir treatment

Ninety days of subcutaneous remdesivir treatment starting at 30 months in male F344BN F1

hybrid rats had no adverse effects on food consumption as noted by observation and lack of

difference in body weights before and after treatment between control and treated rats (S1

Fig). The mean lifespan of male F344BNF1 rats is 34 months [37] and rat survival was not

affected by remdesivir treatment with three control and two remdesivir-treated rats reaching a

point where rat body condition scoring indicated that death was imminent and animals were

culled during the 90 days of the experiment (Chi squared = 0.582). Body, heart, kidney, and

muscle weights also were not affected by the remdesivir treatment (Fig 2).

Measures of mtDNA copy number and deletion mutation frequency

following remdesivir treatment

Similar to the husbandry and morphometric outcomes, mtDNA copy number and deletion

mutation frequency were not affected by 90 days of remdesivir treatment (Fig 3). For the

33-month-old control versus treated rats, the average mtDNA copy number per diploid

nucleus was 2567 versus 2428 (p = 0.45, 95% CI -519.6 to 242.1), 1100 versus 1043 (p = 0.46,

95% CI -221.6 to 107.7), and 1869 versus 2050 (p = 0.32, 95% CI -213.3 to 575.5) for heart, kid-

ney, and quadriceps, respectively. To assess the cellular burden of mtDNA deletion mutations,

we calculated the number of deletion mutations per diploid nucleus and found no effects of

remdesivir. MtDNA deletion mutation frequency in control versus treated rats was 2.6x10-4

versus 3.1x10-4 (p = 0.21, 95% CI -3.433e-5 to 1.399e-4), 1.6x10-4 versus 1.4x10-4 (p = 0.40,

95% CI -6.337e-5 to 2.704e-5) and 4.7x10-3 versus 3.7x10-3 (p = 0.57, 95% CI -4.697e-3 to

2.731e-3) for heart, kidney, and quadriceps, respectively. MtDNA copy number and deletion

mutation frequency differ greatly between heart, kidney, and skeletal muscle at 33 months.

Heart mtDNA copy number was 1.70-fold higher than kidney and 1.37-fold higher than quad-

riceps, while the deletion mutation frequency in skeletal muscle was 18-fold higher than heart

and 29-fold higher than kidney.

Discussion

To our knowledge, this is the first study examining the impact of remdesivir on mtDNA met-

rics in aging rodents. As mitochondrial dysfunction is a conserved phenotype of aging with

accessible and sensitive biomarkers, we investigated the effect of remdesivir on mitochondrial

genetics, i.e., copy number and mtDNA deletion mutation frequency, in aged rats. We found

that 90 days of remdesivir treatment did not alter mitochondrial copy number or deletion
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mutation frequency in 33-month-old male F333BNF1 rats. Furthermore, in the aged rats, we

did not observe any effect on body weight, food consumption, or organ weights. Our data adds

to the limited information available on remdesivir’s effect on mitochondria, especially in older

individuals. Also, unlike other studies that focus on a single tissue, our study examined remde-

sivir’s impact on mitochondrial quality in multiple organ/tissue systems, specifically, heart,

kidney, and skeletal muscle. Our findings indicate that the use of remdesivir to treat COVID

in aging patients is not detrimental to their mitochondrial indices.

Remdesivir’s in vivo effects on the mtDNA polymerase and its subsequent impact on mito-

chondrial genetics are just beginning to be understood. Our data do not support the hypothesis

that remdesivir affects mtDNA in vivo, despite the varied in vitro findings and in vivo findings

in young animals [16, 26]. Moreover, although IV remdesivir in rhesus macaques, at a therapeu-

tic concentration of 1μM remdesivir, showed no significant reduction in mtDNA copy number,

a higher therapeutic level (2 μM) resulted in a 26% decrease in mtDNA copy number [27]. In

contrast, when Bjork and Wallace [26] assessed the dose-dependent effect of remdesivir on

mitochondrial DNA replication by exposing human hepatoma HepG2/C3A cells to increasing

Fig 2. Effects of three months of remdesivir treatment on body, heart, kidney and quadriceps mass in hybrid rats.

Rats were weighed at 33 months of age before they were sacrificed. Whisker plots denote mean and SEM. Black circles

denote control rats, grey squares denote remdesivir-treated rats. N = 7–9 per experimental group.

https://doi.org/10.1371/journal.pone.0271850.g002
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concentrations of remdesivir (0.1 to 10 μM) for 24 h and 48 h, they did not observe changes in

mtDNA copy number. Given the pharmacokinetics of remdesivir in rats [38], our daily dose of

4.25 mg/kg of remdesivir is comparable to the human dose of 1.25 mg/kg.

The effects of remdesivir on the accumulation of mtDNA deletion mutations has received

very little attention. In human neonatal dermal fibroblasts, remdesivir treatment did not

induce the 4977 or “common” mtDNA deletion mutation [16]. Our data from remdesivir

treatment in aged rats indicate that remdesivir also does not contribute to age-induced mito-

chondrial genetic structural rearrangements and reassuring of remdesivir safety in older

individuals.

Fig 3. Effects of three months of remdesivir treatment on mtDNA copy number, deletion frequency, and

deletions per nucleus in 33-month-old hybrid rats. A. heart, B. kidney, and C. quadriceps muscle. Deletion

frequency and deletions per nucleus correspond to interrogation of the major arc of the mitochondrial genome as

demonstrated in Fig 1B. Whisker plots denote mean and SEM. Black circles denote control rats, grey squares denote

remdesivir-treated rats. N = 7–9 per experimental group.

https://doi.org/10.1371/journal.pone.0271850.g003
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Little is known about the effect of remdesivir on mitochondrial transcription. Bjork and

Wallace [26] studied the dose-dependent effect of remdesivir on mitochondrial gene expres-

sion in vitro and found no evidence that remdesivir interferes with gene transcription. In a

separate study, when HepG2 (liver) and HT-29 (intestinal) cells, treated with remdesivir for 8

and 24 h (in contrast to 24 and 48 h for Bjork et al), were analyzed by RNAseq, there was a

decrease in the expression of genes involved in mitochondrial respiration and an observation

that remdesivir decreases cellular ATP [25 Preprint]. They hypothesized that this reduction in

ATP was, at least in part, due to a reduction in mitochondrial gene expression. The discrep-

ancy in these two studies should be tested, using aged rodents, in transcriptomic studies such

as RNAseq. Aged rodent studies would have the added advantage of utilizing in vivo samples,

compared to the aforementioned in vitro studies, providing a clearer and more accurate pic-

ture. Additionally, an aged rodent model would be conducive to testing remdesivir for side

effects that might be expected in older adults.

Unlike human COVID-19 patients who are administered remdesivir via intravenous infu-

sion, the aged rats in this study were given remdesivir in the form of a subcutaneously

implanted time-release tablet. The remdesivir treatment in our study was considerably longer–

90 days–as opposed to a 5-10-day course in humans. We would, therefore, predict more pro-

nounced side effects in the aged rats treated with remdesivir, compared to those seen in

humans. This is not what we observe. Our results demonstrate that remdesivir is not detrimen-

tal to mitochondrial quality and quantity in an appropriately aged animal model. We examined

rat heart, kidney, and skeletal muscle, but remdesivir has also been reported to have hepatic side

effects [39]; we did not examine liver tissue for mtDNA effects. For mtDNA copy number and

deletion frequency, our minimal effects of interest would be increases or decreases greater than

1.5-fold. These effects of interest are based on previous studies showing that skeletal muscle

mtDNA copy number is increased by more than 2-fold by interventions such as exercise [40]

and deletion mutation frequency is increased by ~2-fold with other drug treatments that have

significant physiological effects in aged rats [41]. As our effects of interest fall outside the 95%

confidence intervals for our measurements of mtDNA copy number and deletion frequency

with remdesivir treatment, we interpret these negative results to be meaningful [42].

In summary, our data demonstrate that remdesivir does not compromise mitochondrial

copy number or mtDNA deletion mutation frequency in heart, kidney, and skeletal muscle in

aged rodents. In addition to testing its impact on other relevant tissues like brain and liver,

future work should focus on examining the effect of remdesivir on in vivo mitochondrial tran-

scription. Finally, because rodent studies are unable to completely predict human outcomes,

similar studies should be extended to clinical samples of human COVID-19 patients who

received remdesivir treatment.

Supporting information

S1 Fig. Initial and final body mass. Rats were weighed at 30 months of age before starting pla-

cebo or remdesivir treatment and at 33 months of age before they were sacrificed. Whisker

plots denote mean and SEM. Black circles denote control rats, grey squares denote remdesivir-

treated rats. N = 7–9 per experimental group.

(TIF)

S1 File. Mass spectrometry confirmation of remdesivir.

(PDF)

S2 File. Supporting data. All data necessary to replicate study findings.

(XLSX)
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